trigonal-planar geometry in $\left[\mathrm{Au}\left(\mathrm{Ph}_{3} \mathrm{P}_{3}\right]\left[\mathrm{B}_{9} \mathrm{H}_{19} \mathrm{~S}\right]\right.$ [Au-P 2.345, 2.384, $2.389 \AA ;$ P-Au-P 112.3, $121.5,124.1^{\circ}, \mathrm{Au} 0.20 \AA$ from the P_{3} plane (Guggenberger, 1974)] and in $\left[\mathrm{Au}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}\right]\left[\mathrm{BPh}_{4}\right]$ [Au P $2.365,2.384,2.403 \AA, \mathrm{P}-\mathrm{Au}-\mathrm{P}$ 115.2, 119.3, $125.4^{\circ}, \mathrm{Au} 0.06 \AA$ from the P_{3} plane (Jones, 1980)].

This research was supported by grant RR-8102 from the Division of Research Resources of the National Institutes of Health and National Science Foundation grant RII-8504810 for purchase of the diffractometer. We thank Dr Charles L. Barnes for his assistance in collecting X-ray intensity data.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Guggenberger, L. J. (1974). J. Organomet. Chem. 81, 271-280.
Johnson, C. K. (1976). ORTEP-II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, P. G. (1980). Acta Cryst. B36, 3105-3107.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Muir, M. M., Cuadrado, S. I., Muir, J. A. \& Barnes, C. L. (1988). Acta Cryst. C44, 1659-1660.

Sutton, B. M., McGusty, E., Walz, D. T. \& Di Martino, M. J. (1972). J. Med. Chem. 15, 1095-1098.

Two New Crystal Morphologies for Tetraphenyldibismuthine, $\mathbf{B i}_{\mathbf{2}} \mathbf{P h}_{\mathbf{4}}$

By Kenton H. Whitmire* and Juanita M. Cassidy
Department of Chemistry, Rice University, PO Box 1892, Houston, TX 77251, USA

(Received 11 March 1991; accepted 11 October 1991)

Abstract

Tetraphenyldibismuthine, $\mathrm{Bi}_{2} \mathrm{Ph}_{4}, M_{r}=$ 726.38. (1) monoclinic, $P 2_{1} / n, a=11.531$ (2), $b=$ 5.801 (3), $\quad c=16.691$ (2) $\AA, \quad \beta=104.87$ (2) ${ }^{\circ}, \quad V=$ 1079.2 (6) $\AA^{3}, Z=2, D_{x}=2.24 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=$ $0.7107 \AA, \quad \mu=162.42 \mathrm{~cm}^{-1}, \quad F(000)=660, \quad T=$ $296 \mathrm{~K}, R=0.034$ for 1468 reflections with $I>3 \sigma(I)$. Two identical pyramidal $\mathrm{Ph}_{2} \mathrm{Bi}$ fragments, related by an inversion center, are joined with a $\mathrm{Bi}-\mathrm{Bi}$ bond [2.988 (1) \AA]. The average $\mathrm{Bi}-\mathrm{C}$ bond distance is $2.26 \AA$ with $\mathrm{Bi}-\mathrm{Bi}-\mathrm{C}_{\text {ave }} 93.6^{\circ}$ and $\mathrm{C}-\mathrm{Bi}-\mathrm{C}$ 93.3 (4) ${ }^{\circ}$. (2) Tetragonal, $14_{1} / a, a=28.07$ (1), $c=$ 10.83 (9) $\AA, \quad V=8533$ (4) $\AA^{3}, \quad Z=16, \quad D_{x}=$ $2.26 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.7107 \AA, \quad \mu=$ $164.15 \mathrm{~cm}^{-1}, F(000)=5280, T=296 \mathrm{~K}, R=0.038$ for 1287 reflections with $I>3 \sigma(I)$. The structure is essentially as for the monoclinic form with $d_{\mathrm{Bi}-\mathrm{Bi}}=$ 2.984 (2) $\AA, \quad d_{\mathrm{Bi}-\mathrm{C}_{\text {(ave }}}=2.24 \AA, \quad \mathrm{Bi}-\mathrm{Bi}-\mathrm{C}_{\text {ave }} 92.7$ and $\mathrm{C}-\mathrm{Bi}-\mathrm{C}_{\mathrm{ave}} 96.7^{\circ}$.

Experimental. $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$ was obtained as the by-product of the reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with $\mathrm{Na}^{+} . \mathrm{BiPh}_{2}^{-}$in NH_{3} (1). Crystals which grew from hexane solution gave crystals with two new cell morphologies: monoclinic and tetragonal. Data on the monoclinic form were measured from a needle-like crystal of dimensions $0.1 \times 0.1 \times 0.5 \mathrm{~mm}$ using a Rigaku AFC5S fully

[^0]0108-2701/92/050917-03\$06.00
automated single-crystal X-ray diffractometer over the range $h 0$ to $14, k 0$ to $7, l-21$ to 20 . The unit cell was determined from 23 reflections over the range $9.9 \leq 2 \theta \leq 17.3^{\circ}$ and later refined using reflections in the range $23 \leq 2 \theta \leq 29^{\circ}$. 2849 reflections were collected of which 2720 were unique ($R_{\text {int }}=$ 3.4%) and 1468 were classified as observed [$I>$ $3 \sigma(I)]$. The standards showed significant decay during data collection (40%). The structure was solved using the program MITHRIL (Gilmore, 1983) which located the Bi atoms, followed by full-matrix least squares and Fourier syntheses to find the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic U values while H atoms were included in calculated positions but not refined. The data were corrected for Lorentzpolarization effects and absorption (ψ scans, transmission range $0.8167-1.000$) (DIFABS; Walker \& Stuart, 1983). Refinement of 118 variables (Molecular Structure Corporation, 1988) was carried out on F with final $R=0.034, w R=0.040, S=1.02$ and a maximum Δ / σ of 0.0003 . The final difference map showed peaks $\Delta \rho_{\min }=-1.56, \Delta \rho_{\max }=1.12 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (Cromer \& Waber, 1974). The molecule sits on a crystallographic inversion center lying at the midpoint of the $\mathrm{Bi}-\mathrm{Bi}$ bond and consequently only half of the molecule is
(C) 1992 International Union of Crystallography

Table 1. Positional parameters and $B_{\text {eq }}$ for $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, monoclinic form

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Bi	0.44449 (4)	0.18905 (8)	0.53830 (2)	3.24 (2)
C(1)	0.337 (1)	-0.062 (2)	0.5926 (6)	3.3 (4)
C(2)	0.391 (1)	-0.236 (2)	0.6445 (7)	3.9 (5)
C(3)	0.324 (1)	-0.391 (2)	0.6775 (8)	5.0 (6)
C(4)	0.205 (1)	-0.373 (3)	0.661 (1)	6.0 (8)
C(5)	0.146 (1)	-0.200 (3)	0.609 (1)	6.2 (7)
C(6)	0.212 (1)	-0.046 (3)	0.5755 (8)	5.2 (6)
C(7)	0.293 (1)	0.255 (2)	0.4248 (6)	3.2 (4)
C(8)	0.228 (1)	0.457 (2)	0.4225 (7)	4.6 (5)
C(9)	0.131 (1)	0.499 (2)	0.3562 (8)	4.8 (6)
C(10)	0.099 (1)	0.348 (2)	0.2918 (7)	4.4 (6)
C(11)	0.161 (1)	0.149 (2)	0.2919 (7)	4.7 (6)
C(12)	0.259 (1)	0.103 (2)	0.3592 (7)	4.3 (5)

Table 2. Selected intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, monoclinic form

Bi	Bi^{i}		$2.988(1)$	Bi	$\mathrm{C}(1)$		$2.25(1)$
Bi	$\mathrm{C}(7)$		$2.26(1)$				
Bi^{i}	Bi	$\mathrm{C}(1)$	$92.2(3)$	Bi^{i}	Bi	$\mathrm{C}(7)$	$95.1(3)$
$\mathrm{C}(1)$	Bi	$\mathrm{C}(7)$	$93.3(4)$				

Table 3. Positional parameters and $B_{\text {eq }}$ for $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, tetragonal form

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Bi(1)	0.07849 (3)	0.09708 (3)	0.11539 (8)	4.13 (5)
Bi(2)	0.03058 (3)	0.02517 (3)	0.27569 (8)	4.34 (5)
C(11)	0.0116 (7)	0.1189 (8)	0.017 (2)	3.8 (5)
C(12)	0.0036 (8)	0.1676 (8)	-0.000 (2)	4.4 (5)
C(13)	-0.0358 (9)	0.1819 (8)	-0.075 (2)	5.8 (6)
C(14)	-0.0658 (8)	0.1503 (8)	-0.114 (2)	4.5 (5)
C(15)	-0.0618 (8)	0.1030 (9)	-0.097 (2)	5.4 (6)
C(16)	-0.0227 (8)	0.0877 (8)	-0.030 (2)	4.3 (5)
C(21)	0.1019 (7)	0.0395 (7)	-0.018 (2)	3.6 (5)
C(22)	0.0853 (8)	0.0383 (8)	-0.140 (2)	4.6 (5)
C(23)	0.1032 (8)	0.0036 (8)	-0.219 (2)	5.3 (6)
C(24)	0.1363 (8)	-0.0261 (8)	-0.181 (2)	4.3 (5)
C(25)	0.1549 (8)	-0.0265 (8)	-0.064 (2)	4.8 (6)
C(26)	0.1352 (8)	0.0072 (8)	0.017 (2)	4.4 (5)
C(31)	0.0065 (7)	0.0815 (7)	0.408 (2)	3.6 (5)
C(32)	-0.0286 (8)	0.1122 (9)	0.374 (2)	5.5 (6)
C(33)	-0.0460 (9)	0.1485 (9)	0.454 (2)	6.1 (6)
C(34)	-0.026 (1)	0.154 (1)	0.565 (2)	7.0 (7)
C(35)	0.0087 (8)	0.1226 (8)	0.607 (2)	4.7 (5)
C(36)	0.0245 (7)	0.0875 (7)	0.528 (2)	3.8 (5)
C(41)	0.0976 (7)	0.0073 (8)	0.377 (2)	4.1 (5)
C(42)	0.1325 (8)	0.0407 (8)	0.403 (2)	4.7 (5)
C(43)	0.1758 (8)	0.0274 (8)	0.466 (2)	4.8 (6)
C(44)	0.1796 (8)	-0.0197 (9)	0.496 (2)	5.5 (6)
C(45)	0.1467 (9)	-0.0535 (8)	0.470 (2)	5.8 (6)
C(46)	0.1045 (7)	-0.0398 (7)	0.410 (2)	3.6 (5)

Table 4. Selected intramolecular distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, tetragonal form

$\mathrm{Bi}(1)$	$\mathrm{Bi}(2)$	$2.984(2)$	$\mathrm{Bi}(1)$	$\mathrm{C}(11)$	$2.24(2)$	
$\mathrm{Bi}(1)$	$\mathrm{C}(21)$	$2.27(2)$	$\mathrm{Bi}(2)$	$\mathrm{C}(31)$	$2.24(2)$	
$\mathrm{Bi}(2)$	$\mathrm{C}(41)$		$2.23(2)$			
$\mathrm{Bi}(2)$	$\mathrm{Bi}(1)$	$\mathrm{C}(11)$	$94.8(5)$	$\mathrm{Bi}(2)$	$\mathrm{Bi}(1)$	$\mathrm{C}(21)$
$91.1(5)$						
$\mathrm{C}(11)$	$\mathrm{Bi}(1)$	$\mathrm{C}(21)$	$97.7(7)$	$\mathrm{Bi}(1)$	$\mathrm{Bi}(2)$	$\mathrm{C}(31)$
$\mathrm{Bi}(1)$	$\mathrm{Bi}(2)$	$\mathrm{C}(41)$	$93.3(5)$	$\mathrm{C}(31)$	$\mathrm{Bi}(2)$	$\mathrm{C}(41)$
	$95.7(8)$					

unique. Atomic coordinates are given in Table 1 and selected bonded metricals in Table 2.* An ORTEP diagram (Johnson, 1976) is presented in Fig. 1 and a packing diagram in Fig. 2.

Data on the tetragonal form were obtained from a cube-shaped crystal of dimensions $0.2 \times 0.2 \times$ 0.2 mm as above over the range $h 0$ to $22, k 0$ to 30 , $l 0$ to 11 (maximum $\sin \theta / \lambda=0.54 \AA^{-1}$). The unit cell was determined from 25 reflections over the range $7.0 \leq 2 \theta \leq 15.0^{\circ}$. 2471 reflections were collected of which 2352 were unique ($R_{\text {int }}=4.6 \%$) and 1287 were classified as observed $[I>3 \sigma(I)]$. The standards showed some decay during data collection (16%). The structure was solved using the program MITHRIL (Gilmore, 1983) which located the Bi atoms, followed by full-matrix least squares and Fourier syntheses to find the remaining nonhydrogen atoms. The Bi atoms were refined anisotropically, the C atoms isotropically and the H atoms

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters and complete distances and angles for both forms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54746 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. ORTEP diagram and atom-labeling scheme of $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, monoclinic form, showing 50% probability ellipsoids.

Fig. 2. Packing diagram of $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, monoclinic form.

Fig. 3. $O R T E P$ diagram and atom-labeling scheme of $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, tetragonal form, showing 50% probability ellipsoids.

Fig. 4. Packing diagram of $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$, tetragonal form.
were included in calculated positions but not refined. The data were corrected for Lorentz-polarization effects and absorption (DIFABS, transmission range 0.901-1.238). Refinement of 115 variables (Molecular Structure Corporation, 1988) was carried out on F with final $R=0.038, w R=0.039, S=1.21$ and a maximum Δ / σ of 0.0001 . The final difference map showed peaks $\Delta \rho_{\min }=-0.84, \Delta \rho_{\max }=$ $0.93 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography. Atomic coordinates are given in Table 3 and selected bond metricals in Table 4. An ORTEP diagram is presented in Fig. 3 and a packing diagram in Fig. 4.

Related literature. Bond metricals are similar to those reported for $\mathrm{Bi}_{2} \mathrm{Ph}_{4}$ in a triclinic cell (Calderazzo, Morvillo, Pelizzi \& Poli, 1983; Calderazzo, Poli \& Pelizzi, 1984).

The National Science Foundation and the Robert A. Welch Foundation are gratefully thanked for support of this work.

References

Calderazzo, F., Morvillo, A., Pelizzi, G. \& Poli, R. (1983). J. Chem. Soc. Chem. Commun. pp. 507-508.
Calderazzo, F., Poli, R. \& Pelizzi, G. (1984). J. Chem. Soc. Dalton Trans. pp. 2365-2369.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 71 (scattering factors) and p. 148 (anomalous dispersion). Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Gilmore, C. J. (1983). MITHRIL. A computer program for the automatic solution of crystal structures from X-ray data. Univ. of Glasgow, Scotland.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). TEXSAN. TEXRAY Structure Analysis Package. Version 2.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1992). C48, 919-921

Structure of 2-Chloroimidazolium Aquatrichlorocuprate(II)

By Giovanni Valle
Centro di Studio sui Biopolimeri del CNR, Dipartimento di Chimica Organica, Università di Padova, Padova, Italy
and Renato Ettorre
Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, Padova, Italy

(Received 10 June 1991; accepted 8 October 1991)
Abstract. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{ClN}_{2}^{+} .\left[\mathrm{CuCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}, \quad M_{r}=291.5$, monoclinic, $P 2_{1} / c, a=9.023$ (1), $b=13.881$ (2), $c=$ 7.341 (1) $\AA, \quad \beta=97.8$ (2) ${ }^{\circ}, \quad V=910.9$ (5) $\AA^{3}, \quad Z=4$,
$D_{x}=2.13 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $33.72 \mathrm{~cm}^{-1}, F(000)=572$, room temperature, $R=$ 0.053 for 1106 reflections with $F>7 \sigma(F)$. The struc© 1992 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

